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I, 111111.

AN IMPROVED ALGORITHM FOR ADAPTIVE PROCESSING sh

INTRODUCTION

A discrete form of a least-mean-square (LMS) algorithm based on the method of
steepest descent was given by Widrow et al. [1] as a means of determining the weight
vectors for minimizing interference entering an adaptive array. Their algorithis becomies
unstable for fast adaptation, and this report will show that a modification to their ilgo-
rithm provides unconditional stability and better performance even for slow adaptation.

DISCUSSION

The steepest-descent algorithm was given in Ref. 1 as

W(U + 1) W(j) - 2k8 E0) X0), i I (1)

where WU' + 1) is the weight vector to be used on the (j + 1)th input data sample, A)
ic tho i+1, l~flflT + dlt cnmnlo b ioa conalr nnncon + ann-? RFii icv B armyn aicrnnl rAm~lnaon the jth daput tsamp plea is gv by a sarcotant, and -,, is the ero -,_ develope
on the jth data sample and is given by ,,' .. .. ........l ::

EUi) = d(i) - WT (11 _Ui),

in which d(j) is the jth sample of the desired signal and WT is the transpose of W..,

In general X(j) and W(U) are multidimensional vector quantities. A form otf*.9iqpa-
tion is given in Ref. 2 for the case of an Applebaum-Howells implementation as

W%(U + 1) = ) (1 + )E() V* U) (2)

where r is the filter smoothing constant, G is the gain term, Vi (i) is the input fro#0
ith array element, with 1$ being the conjugate of Vi, and I)

N

_EU1 Pa') - Wi (j} Vi (), 

i= 1 P i th pioi .

in which P(1) is the pilot signal. ' 

To simplify the analysis, we consider the special case of a single adaptive loop 0in a
sidelobe-canceler configuration L3) as shown in Fig. 1. In Fig. 1 the main input is oh-
tained from a radar antenna and the auxiliary input is obtained from an ofniridirectional
antenna whose gain is normally greater than the sidelobe level of the radar antenna. With-
out loss in generality the pilot signal is taken as the main input, since the adaptati§n

Manuscript submitted November 8, 1976.
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KRETSCHMER AND LEWIS

MAIN INPUT AUXILIARY INPUT

OUTPUT

Fig, 1 - A basic sidelobe-canceler loop

criterion (LMS) is unchanged. The single sidelobe canceler corresponds to Fig. S in Ret 1,
with the error signal defined as

E(t = VI (t) = Vm (t) - W(t) Vt) ,1

where V, (t) is the residue signal, VIm (t) is the radar-channel signal, which is taken as the
desired signal response in Ref. 1, W(t} is a weight signal, Va (t) is the auxiliary-channel
signal, and all functions correspond to complex modulation functions. The sidelobe-
canceler interpretation is also discussed in Ref. 4. From (2) the adaptation algorithm
for the sidelobe canceler becomes

W(j + 1) = KWj) + G(1 -IQ EU) V.* ,

with

E(j) = Vm Q) - W(1) V;2

where

I
K = 1 -- = I - 2gfd

in which f3dB is the integrating-filter 3-dB bandwidth normalized to the sampling fre-
quency f.

2

(34L

(Sb)
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From (3a) it is seen that the next weight W(1 + 1) is derived in terms of the Present
weight and present value of E(w) Vi$ (U). The weight WUj + 1) is then used with the next
auxiliary signal input to determine the residue. For fast ioops, WRV'j + 1) derived *'ruin irtl
present data is not the proper weight for the new input data. The effect is to d
a phase shift, not present in actual loops, which causes loop instability. To ayoi thisW
instability and to provide better cancellation performance and more realistic loop sibla
tion, a preferred algorithm is

W(j) = KW(j - 1) + 0(1 - K) E(j) V1 (I), C(;4a)

with

E(j) = Vm (I) - W(j) Va(J). (4b)

In this algorithm the weight applied to V, (1) is derived in terms of present input yAls.
In effect the weight is taken prior to the delay in Fig. 7 of Ref. 1 rather than,' afteqrj,. 
Thus the weight is proper for the current data input rather than for the inputildlkqpNeo
sample interval earlier.

STARTY.TTV CONTDfERATIONS

The steepest-descent algorithm given by (3) is

W(j + 1) = KWU) + G(1 - K) [ Vm (I) - WU) Va0)l V*(i) (5)

For a step input with V,(J) equal to a constant and also equal to Vm (I) so that the swnal
are perfectly correlated, (5) may be written as

Wf4 + 1) = IWJ4 (ik AL 4- A . .

where

A G(1 - K) IVdt 12 .

Letting W(1) equal 0, it is found from several iterations of (6) that the general terw is

A (1 - xA'-1)1i-x ' d0 r 
where

x= K - G(1 - K) '12'.

For stability it is required that IxI < 1 or

1G0(1 K) 1Ed12 -KI < 1. (8)

3
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Substituting the value

K = 1 -- 1 - 2 -f3dB

in (8) leads to

Also, the weight will not ring in amplitude for A less than unity.

A stability condition derived for the sidelobe canceler version of (1) is found to he

11 + 2khIV,1 2 < 1,

which agrees with the stability condition given by equation (27) in Ref. 1, with [Vt2 in
cur ease heing enual to i-. unnirrnu eaienvalae.

Computer simulations were run to demonstrate the instability associated with use of
(3) and are shown in Figs. 2a and 2b. In these simulations G equals 100 and [fV 2 equals
2. From (9) the stability condition for the specified values of G and IV12 is

tSdB < 0.00158.

m
g I
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0
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Fig. 2a - Response of the steepest-descent algorithm
when T3dB = O.00155
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SRMPFE NUMJEH

CONTrNUES OFF SCALE

Fig. 2b - Response of the steepest-descent algo-
rithm when f&LB = 0.00162

Figure 2a shows a dampled oscillation occurring for f3dB equal to 0.00155, and Fig. 2b
shows instability occurring for f3dB equal to 0.00162, with the weight phase alternati ng
between 0 and 180 degrees and the weight magnitude growing unbounded.

For the improved algorithm the general weight term of (4) for a step input14fl qIn-
stant value and Vm equal to Ed may be shown to be

: :':. : ' :( 1 I)
i ; :,:; : :

W(N) = C (1 - DN)1-D 
where

and

I + A: : i: , ;: :

Ca1 +A'
_~ ~~~~~~~~ A

1+A- 'C0,,ak

Since D is less than unity, W(N) is unconditionally stable. In Fig. 3 the response to a
step input is plotted using the improved algorithm for the same value of f3dB (0.00162)
which caused unstable operation of the steepest-descent algorithm (Fig. 2b). There is
no overshoot or ringing in Fig. 3, since the response is unconditionally stable.,
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Fig. 3 - Response of the improved algorithm
when 'f3dB = 0.00162

SIMULATION OF RANDOM INPUTS

Computer simulations were run using independent samples of a Gaussian random pro-
cess having a mean of 0 and a variance equal to 2. Successive samples were correlated by
taking a sliding-window average of two samples and renormalizing so that the resultant
nower rpnn-ained eqmual to 9. Thle same samnles were then annied to the main and auxiliary
channels of the sidelobe canceler. The steepest-descent algorithm and the improved algo-
rithm were compared for an input step of random values which were the same for each
simulation. In these simulations a constant target signal was introduced in the radar chan-
nel at sample number 250 at a clutter-to-signal level of 20 dB.

The steepest-descent and improved algorithms are shown in Figs. 4a and 4b for fdg
equal to 0.00025, which corresponds to an effective loop bandwidth (BE) to jammer band-
width (Bj) ratio of 0.1. BE is defined as

BE - (1 + 01IEd[} t2 f

Comparison of Figs. 4a and 4b shows that the steepest-descent algorithm gives more points
of lower cancellation (under the 40-dB line for example) than the improved algorithm gives.
This is attributed to the ringing in the steepest-descent algorithm which is present even for
the slower loop adaptation. Ringing will occur, as previously mentioned, when A of (7)
is greater than 1. Thus use of the relation

A = G(1 - Kf) !VdU) L 2 < 1

and of the loop parameters G = 100 and fadB = 0.00025 leads to the requirement for
ringing that

t},nj) t > 2.52.

6
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Fig. 4a- Response of the steepest-descent algo- 
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Since I U) is a Gaussian random variable with a mean of 0 and a variance.,eq~to
2, jIo~U)l is Rayleigh and the probability of EdU0)i being greater than 2.52 is

PR(I4d U)! > 2.52) _ -(2.522 )14 = 0.20.i 

H~ence there is a 20% probability of causing ringing in this slow-loop simulation. The result
of this ringing is to cause degraded cancellat~ion of jamming signals which is due stitly to4-L.~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .: I.! I
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In Figs. 5a and 5b the steepest-descent and improved algorithm results are shown for
*fad = 0.00124. or corresnondinglv 7ThUR7 = (I R and nnnr nnrfnrrnmin is see-n ton reultl
for the steepest-deseent algorithm whereas good performance is obtained with the improved
algorithm. For the case of [odD = 0.0025, or B/B 4 = 1, the steepest-descent algorithm
gives unstable loop performance and (Fig. 6) the improved algorithm gives stable perfor-
mance.

I i: ~ [ , 1!'1; I..I 

Ul

i |zCC 2CC 30 5t 2 L. 1
rRMPLE NUKER

Fig. 5a - Response of the steepest-deseent algo-
rithm when fdB = 0.00124

i~~~~~~~~~~h~ ~~i

A I IS bE X, .,, 1,SPNPLE M -rIBERFg 5h Resons of the m algorit

SARdRE NUM0ER

Fig. Sb -Response of the improved algorithm
when f~dB = O.O0l24
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Fig. 6 - Response of the improved algorithm
when fadn = 0.0025

SUMMARY

A comparison of aigorithms was shown for a single loop in a sideiobe-canceieriapplica-
tion as an illustration. The concept generalizes to any adaptive processing which minimizes
the mean-square error. The generalization of (4) for M multiple loops is given for-the ith
weight by

Wio() = KWJJ - 1) + G(1 - K) E0U) Vi* (j),

with

M

E(j) = Vm(j) - 3 I W(j) V"(j).

n=3

A simplified version of this algorithm is given by

Wij) = KWE(j - 1) + G(1 - K) E(j) Vi*(j),

, :, :::i; ,,!D:(012b): ::::.. ...
E. :~ i

. s... i: (1. a)

with

E(j) = Vm(j) - Wifj} Vi(i) - E

n-l
Wn(i - 1)V,(j).

:. . . i.. ::. :: . .

: ,,. .. . .: .
... ... :1rb)

In this simplified algorithm each weight is found in a closed-loop fashion, as in the single-
loop case, while the other weights are frozen. The actual residue signal resulting from
this algorithm is then taken to be

9
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